Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
NPJ Vaccines ; 8(1): 13, 2023 Feb 13.
Article in English | MEDLINE | ID: covidwho-2241991

ABSTRACT

Despite the success of existing COVID-19 vaccine platforms, the persistent limitations in global deployment of vaccines and waning immunity exhibited by many of the currently deployed vaccine platforms have led to perpetual outbreaks of SARS-CoV-2 variants of concern. Thus, there is an urgent need to develop new durable vaccine candidates, to expand the global vaccine pipeline, and provide safe and effective solutions for every country worldwide. Here we deeply profiled the functional humoral response induced by two doses of AS03-adjuvanted and non-adjuvanted plant-derived Coronavirus-like particle (CoVLP) vaccine candidate from the phase 1 clinical trial, at peak immunogenicity and six months post-vaccination. AS03-adjuvanted CoVLP induced robust and durable SARS-CoV-2 specific humoral immunity, marked by strong IgG1antibody responses, potent FcγR binding, and antibody effector function. Contrary to a decline in neutralizing antibody titers, the FcγR2A-receptor binding capacity and antibody-mediated effector functions, such as opsonophagocytosis, remained readily detectable for at least six months.

2.
Nat Commun ; 13(1): 6905, 2022 Nov 12.
Article in English | MEDLINE | ID: covidwho-2118465

ABSTRACT

As the SARS-CoV-2 pandemic evolves, vaccine evaluation needs to include consideration of both durability and cross-reactivity. This report expands on previously reported results from a Phase 1 trial of an AS03-adjuvanted, plant-based coronavirus-like particle (CoVLP) displaying the spike (S) glycoprotein of the ancestral SARS-CoV-2 virus in healthy adults (NCT04450004). Humoral and cellular responses against the ancestral strain were evaluated 6 months post-second dose (D201) as secondary outcomes. Independent of dose, all vaccinated individuals retain binding antibodies, and ~95% retain neutralizing antibodies (NAb). Interferon gamma and interleukin-4 responses remain detectable in ~94% and ~92% of vaccinees respectively. In post-hoc analyses, variant-specific (Alpha, Beta, Delta, Gamma and Omicron) NAb were assessed at D42 and D201. Using a live virus neutralization assay, broad cross-reactivity is detectable against all variants at D42. At D201, cross-reactive antibodies are detectable in almost all participants against Alpha, Gamma and Delta variants (94%) and the Beta variant (83%) and in a smaller proportion against Omicron (44%). Results are similar with the pseudovirion assay. These data suggest that two doses of 3.75 µg CoVLP+AS03 elicit a durable and cross-reactive response that persists for at least 6 months post-vaccination.


Subject(s)
COVID-19 , Vaccines, Virus-Like Particle , Viral Vaccines , Adult , Humans , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Immunity , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
3.
NPJ Vaccines ; 7(1): 142, 2022 Nov 09.
Article in English | MEDLINE | ID: covidwho-2106408

ABSTRACT

The rapid spread of SARS-CoV-2 continues to impact humanity on a global scale with rising total morbidity and mortality. Despite the development of several effective vaccines, new products are needed to supply ongoing demand and to fight variants. We report herein a pre-specified interim analysis of the phase 2 portion of a Phase 2/3, randomized, placebo-controlled trial of a coronavirus virus-like particle (CoVLP) vaccine candidate, produced in plants that displays the SARS-CoV-2 spike glycoprotein, adjuvanted with AS03 (NCT04636697). A total of 753 participants were recruited between 25th November 2020 and 24th March 2021 into three groups: Healthy Adults (18-64 years: N = 306), Older Adults (≥65 years: N = 282) and Adults with Comorbidities (≥18 years: N = 165) and randomized 5:1 to receive two intramuscular doses of either vaccine (3.75 µg CoVLP/dose+AS03) or placebo, 21 days apart. This report presents safety, tolerability and immunogenicity data up to 6 months post-vaccination. The immune outcomes presented include neutralizing antibody (NAb) titres as measured by pseudovirion assay at days 21 and 42 as well as neutralizing antibody cross-reactivity to several variants of concern (VOCs): Alpha, Beta, Gamma, Delta, and Omicron (BA.1), up to 201 days post-immunization. Cellular (IFN-γ and IL-4 ELISpot) response data in day 21 and 42 peripheral blood are also presented. In this study, CoVLP+AS03 was well-tolerated and adverse events (AE) after each dose were generally mild to moderate and transient. Solicited AEs in Older Adults and Adults with Comorbidities were generally less frequent than in Healthy Adults and the reactogenicity was higher after the second dose. CoVLP+AS03 induced seroconversion in >35% of participants in each group after the first dose and in ~98% of participants, 21 days after the second dose. In all cohorts, 21-days after the second dose, NAb levels in sera against the vaccine strain were ~10-times those in a panel of convalescent sera. Cross-reactivity to Alpha, Beta and Delta variants was generally retained to day 201 (>80%) while cross-reactivity to the Gamma variant was reduced but still substantial at day 201 (73%). Cross-reactivity to the Omicron variant fell from 72% at day 42 to 20% at day 201. Almost all participants in all groups (>88%) had detectable cellular responses (IFN-γ, IL-4 or both) at 21 days after the second dose. A Th1-biased response was most evident after the first dose and was still present after the second dose. These data demonstrated that CoVLP+AS03 is well-tolerated and highly immunogenic, generating a durable (at least 6 months) immune response against different VOCs, in adults ≥18 years of age, with and without comorbidities.

4.
N Engl J Med ; 386(22): 2084-2096, 2022 06 02.
Article in English | MEDLINE | ID: covidwho-1830290

ABSTRACT

BACKGROUND: Coronavirus-like particles (CoVLP) that are produced in plants and display the prefusion spike glycoprotein of the original strain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are combined with an adjuvant (Adjuvant System 03 [AS03]) to form the candidate vaccine. METHODS: In this phase 3, multinational, randomized, placebo-controlled trial conducted at 85 centers, we assigned adults (≥18 years of age) in a 1:1 ratio to receive two intramuscular injections of the CoVLP+AS03 vaccine or placebo 21 days apart. The primary objective of the trial was to determine the efficacy of the CoVLP+AS03 vaccine in preventing symptomatic coronavirus disease 2019 (Covid-19) beginning at least 7 days after the second injection, with the analysis performed after the detection of at least 160 cases. RESULTS: A total of 24,141 volunteers participated in the trial; the median age of the participants was 29 years. Covid-19 was confirmed by polymerase-chain-reaction assay in 165 participants in the intention-to-treat population; all viral samples that could be sequenced contained variants of the original strain. Vaccine efficacy was 69.5% (95% confidence interval [CI], 56.7 to 78.8) against any symptomatic Covid-19 caused by five variants that were identified by sequencing. In a post hoc analysis, vaccine efficacy was 78.8% (95% CI, 55.8 to 90.8) against moderate-to-severe disease and 74.0% (95% CI, 62.1 to 82.5) among the participants who were seronegative at baseline. No severe cases of Covid-19 occurred in the vaccine group, in which the median viral load for breakthrough cases was lower than that in the placebo group by a factor of more than 100. Solicited adverse events were mostly mild or moderate and transient and were more frequent in the vaccine group than in the placebo group; local adverse events occurred in 92.3% and 45.5% of participants, respectively, and systemic adverse events in 87.3% and 65.0%. The incidence of unsolicited adverse events was similar in the two groups up to 21 days after each dose (22.7% and 20.4%) and from day 43 through day 201 (4.2% and 4.0%). CONCLUSIONS: The CoVLP+AS03 vaccine was effective in preventing Covid-19 caused by a spectrum of variants, with efficacy ranging from 69.5% against symptomatic infection to 78.8% against moderate-to-severe disease. (Funded by Medicago; ClinicalTrials.gov number, NCT04636697.).


Subject(s)
Adjuvants, Vaccine , COVID-19 Vaccines , COVID-19 , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/adverse effects , Adjuvants, Immunologic/therapeutic use , Adjuvants, Vaccine/administration & dosage , Adjuvants, Vaccine/adverse effects , Adjuvants, Vaccine/therapeutic use , Adult , Antibodies, Viral , COVID-19/genetics , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/therapeutic use , Double-Blind Method , Humans , Injections, Intramuscular , SARS-CoV-2/genetics , Vaccination
5.
Cell Mol Immunol ; 19(2): 222-233, 2022 02.
Article in English | MEDLINE | ID: covidwho-1607212

ABSTRACT

Although antivirals are important tools to control severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, effective vaccines are essential to control the current coronavirus disease 2019 (COVID-19) pandemic. Plant-derived virus-like particle (VLP) vaccine candidates have previously demonstrated immunogenicity and efficacy against influenza. Here, we report the immunogenicity and protection induced in rhesus macaques by intramuscular injections of a VLP bearing a SARS-CoV-2 spike protein (CoVLP) vaccine candidate formulated with or without Adjuvant System 03 (AS03) or cytidine-phospho-guanosine (CpG) 1018. Although a single dose of the unadjuvanted CoVLP vaccine candidate stimulated humoral and cell-mediated immune responses, booster immunization (at 28 days after priming) and adjuvant administration significantly improved both responses, with higher immunogenicity and protection provided by the AS03-adjuvanted CoVLP. Fifteen micrograms of CoVLP adjuvanted with AS03 induced a polyfunctional interleukin-2 (IL-2)-driven response and IL-4 expression in CD4 T cells. Animals were challenged by multiple routes (i.e., intratracheal, intranasal, and ocular) with a total viral dose of 106 plaque-forming units of SARS-CoV-2. Lower viral replication in nasal swabs and bronchoalveolar lavage fluid (BALF) as well as fewer SARS-CoV-2-infected cells and immune cell infiltrates in the lungs concomitant with reduced levels of proinflammatory cytokines and chemotactic factors in the BALF were observed in animals immunized with the CoVLP adjuvanted with AS03. No clinical, pathologic, or virologic evidence of vaccine-associated enhanced disease was observed in vaccinated animals. The CoVLP adjuvanted with AS03 was therefore selected for vaccine development and clinical trials.


Subject(s)
Adjuvants, Immunologic/adverse effects , COVID-19 Vaccines/adverse effects , COVID-19/immunology , COVID-19/prevention & control , Immunogenicity, Vaccine/immunology , Pandemics/prevention & control , Polysorbates/adverse effects , SARS-CoV-2/immunology , Squalene/adverse effects , Tobacco/metabolism , Vaccination/methods , Vaccines, Virus-Like Particle/adverse effects , alpha-Tocopherol/adverse effects , Adjuvants, Immunologic/administration & dosage , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/epidemiology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Disease Models, Animal , Drug Combinations , Drug Compounding/methods , Immunity, Humoral , Macaca mulatta , Male , Polysorbates/administration & dosage , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Squalene/administration & dosage , Treatment Outcome , Vaccines, Virus-Like Particle/administration & dosage , alpha-Tocopherol/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL